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SUMMARY 
The first application of a spectral multi-domain method for viscous compressible flow is presented. The 
method imposes a global flux balance condition at the interface so that high-order continuity of the solution 
is preserved. The global flux balance is imposed in terms of a spectral integral of the discrete equations across 
adjoining domains. Since the discretized equations interior to each domain are solved uncoupled from each 
other and since the interface relation has a block structure, the solution scheme can be adapted to the 
particular requirement in each subdomain. To illustrate these advantages a Mach 11 shock calculation is 
presented to study the chemical kinetics initiated as air passes through a fully resolved shock wave. 
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INTRODUCTION 

A number of spectral domain decomposition techniques have appeared in the literature and are 
becoming accepted tools for fluid dynamical calculations. For example, the spectral element 
method which applies finite element methodology using Galerkin spectral discretization in the 
variational formulation within elements is a popular technique.', * This technique utilizes a split 
Galerkin-collocation discretization which restricts its application to convection4iffusion prob- 
lems for incompressible flows. The spectral element method in practice is used in a manner similar 
to classical finite element techniques: low-order internal discretization using many elements with 
no internal stretchings to improve resolution. The technique is most easily implemented if each 
element utilizes the same number of collocation points. Other domain decomposition techniques 
involve explicit enforcement of C' continuity across the interfa~e.~,  It is not clear how well these 
techniques perform for strongly convection-dominated problems; the second author's experience 
with such techniques5 has shown them to be not entirely satisfactory. 

The spectral multi-domain technique of the present paper was developed with compressible 
flow applications in mind. The multiple scales associated with chemically reacting flows and 
transition, both features of hypersonic aerodynamics, were a further consideration in developing 
the multi-domain technique. The former issue will be addressed by incorporating a non- 
equilibrium chemistry model for air into the spectral multi-domain Navier-Stokes solution 
method. The application will focus on the chemical kinetics initiated as air passes through a fully 
resolved shock wave. 
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SPECTRAL MULTI-DOMAIN TECHNIQUE 

Spectral collocation methods have proven to be an efficient discretization scheme for many 
aerodynamic (e.g. References 5-9) and fluid mechanic (e.g. References 10-1 3) problems. The 
higher-order accuracy and resolution shown by these methods allows one to obtain engineering- 
accuracy solutions on coarse meshes, or alternatively to obtain solutions with very small error. 
However, there exist drawbacks to spectral techniques which prevent their widespread usage. 
One drawback has been the requirement that a complicated physical domain must map onto a 
simple computational domain for discretization. This mapping must be smooth if the high-order 
accuracy and exponential convergence rates associated with spectral methods are to be pre- 
served.6 Additionally, even smooth stretching transformations can decrease the accuracy of a 
spectral method if the stretching is severe.' Such stretchings would be required to resolve the thin 
viscous region in an external aerodynamic problem or the widely disparate scales which occur in 
chemically reacting flows. Furthermore, problems with discontinuities in boundary conditions, 
very high-gradient regions or shocks cause oscillations in the spectral solution. The above 
situations are more the rule than the exception in hypersonic flows. 

These restrictions are overcome in the present method by splitting the domain into regions, 
each of which preserves the advantages of spectral collocation and allows the ratio of the mesh 
spacings between regions to be several orders of magnitude higher than allowable in a single 
d ~ m a i n . ' ~  Adjoining regions are interfaced by enforcing a global flux balance which preserves 
high-order continuity of the solution. This interface technique maintains spectral accuracy, even 
when mappings and/or domain sizes are radically different across the interface, provided that the 
discretization in each individual subdomain adequately resolves the solution there. 

Spectral ,flux balance interface technique 

A simple one-dimensional, two-region example will serve to illustrate the present method for 
interfacing two collocation-discretized regions. Given the second-order, potentially non-linear 
boundary value problem 

we wish to place an interface at the point x = m and have independent collocation discretization in 
the regions x(')E [ - 1 ,  m] and x ( ~ ) E  [m, I]. Even though the point x = m  is an interior point to the 
problem domain, simply applying a collocation statement there, utilizing a combination of the 
discretizations on either side, will not work; the resulting algebraic system is singular. This is 
because the spectral second-derivative operator has two zero eigenvalues; thus the patching 
together of two spectrally discretized domains yields potentially four zero eigenvalues in the 
overall algebraic system. Two of these eigenvalues are accounted for by imposition of boundary 
conditions and one by continuity of the solution at the interface, leaving one zero eigenvalue in 
the system. To alleviate this difficulty, a global statement of flux balance is used. Rewriting (1) as 

where the flux is 

G ( U )  = F( U )  - vU,, (3) 
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then integrating (2) from - 1 to 1 results in 
1 

G(U)lx=l -G(U)I,= - 1  +[G]l,=,= S(U)dx. s- 1 

If the jump in flux at  the interface, [GI, is zero, then (4) may be written 

1123 

(4) 

The statement of global flux balance across the two regions, along with the assumption that the 
solution is continuous, provides the condition necessary to close the equation set which results 
from spectral discretization of ( 1 )  in two regions. Note that the left side of ( 5 )  involves the 
discretization in the region x(’) E [- 1, m] while the right side involves the region x(’)E [m, 11. 
Since spectral collocation discretization strongly couples all points in their respective regions, (5) 
couples all points in both discretizations. 

Note also that no statement is made concerning whether or not ( 1 )  is advection- or diffusion- 
dominated. Equation (1) is considered a scalar equation here, although the above is extendable to 
a system. 

Examples 

In this section the present global flux balance, spectral multi-domain method will be shown as 
applied to a number of one- and two-dimensional test problems. The one-dimensional examples 
will serve to show that this method can maintain the exponential-order error convergence which 
is characteristic of collocation methods, even when adjoining domains have radically different 
discretizations in terms of domain size, number of points or stretching. Two-dimensional 
examples will demonstrate the ability of the multi-domain technique to deal with discontinuous 
boundary conditions and coefficients; a calculation on a non-orthogonal mesh will also be given 
to show the generality of the method. 

The first example will illustrate the capability of the method for resolving very high gradients in 
a solution while imposing an interface condition which preserves spectral accuracy. Consider the 
Burgers’ equation 

U ,  ++(U’),= VU,, , x € [ - 1,1], 
(6) 

U( - 1, t)= U(1, t )  =0, U(x, 0)= -sin (xx). 

This problem has been studied extensively by a number of authors, using techniques ranging from 
standard finite difference to single-domain spectral collocation and spectral element.” The 
solution to this problem develops a very steep gradient region in the centre of the domain; the 
slope at  x = 0 reaches a maximum, then decreases as the initial energy is dissipated away. For the 
parameters studied in Reference 15 (v = 0.01/n), this maximum is reached at t =0.5; a very accurate 
analytical solution gives a value of 152.00516 for the maximum slope. The evolution of this 
solution calculated from the present method is shown in Figure 1 at time increments of 0.1. 

In the present study of this problem three domains were used, the middle domain spanning a 
very small region (k 0.05) around the ‘shock’. Additionally, a mapping was applied in the middle 
domain to improve resolution, of the form 

xT = sinh (bxC)/sinh (p), (7) 

where both the computational coordinate xc and the transformed co-ordinate xT are EL- 1, 11 
and a is an O(1) constant chosen to control the packing at xT=O. The maximum stretching 
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X 

Figure 1 .  Computed solution to equation (6) at time increments of 0.1; v =0,01/z, discretization 32/33/32, interfaces 
at k0.05 

allowable in this mapping is subject to the same restriction as stretchings in single-domain 
discretizations, e.g. maximum metric ratios of the order of lo3. 

A second-order backward-Euler time-stepping technique was used; a time-step refinement 
study was performed to extrapolate out time-stepping errors. For this small one-dimensional 
problem, the algebraic system resulting from the spectral discretization of the equation plus 
interface conditions was Newton-linearized and solved directly using Gaussian elimination at 
each time step. 

From the comparison study contained in Reference 15, the two methods giving the best 
accuracy for a given number of grid points were single-domain spectral collocation and spectral 
element. The collocation scheme used a mesh stretching with a maximum-to-minimum metric 
ratio of about 100. Beyond this stretching a degradation in accuracy was found to occur. The 
spectral element discretization utilized four elements with 16 nodes in each. The behaviour of the 
error in maximum slope from these methods and the present scheme is shown in Table I. As can 
be seen, the present method with just 35 total points (1 2 points in the outer domain, 13 points in 
the middle domain, 12 points in the left outer domain (hereafter denoted 12/13/12)) yields results 
of equivalent accuracy to the spectral element and single-domain spectral collocation methods of 
Reference 15 which both use 64 total points. Further mesh refinements using the present method 
show exponential-order error convergence, as seen in Table I by the order-of-magnitude decrease 
in relative error as the mesh is refined to 20/21/20, and again with mesh refinement to 32/33/32. 
For the same total number of points, the present method is an order of magnitude more accurate 
than the single-domain collocation or spectral element solutions of Reference 15. 

In order to demonstrate the capability of the present method to handle radically different 
mappings between adjacent domains, a solution to the above Burgers’ equation for v = is 
shown in Figure 2. The maximum slope for this solution is greater than 5000. The discretization 
used was 12/31/12; the stretching in the middle domain was so severe that the ratio of the largest 
mesh spacing in the outer domains to the smallest in the middle domain is greater than lo5. A 
factor-of-5000 magnification of the high-gradient region of this solution is shown in Figure 3. The 
emphasis in this plot is the oscillation-free resolution of this region. (Linear interpolation between 
points in used for plotting, making the plot appear somewhat jagged). 

To demonstrate the maintenance of conservation by the present interface technique, an initial 
condition was applied to the Burgers’ equation to generate a moving ‘shock’ which passed 
through the interface, as shown in Figure 4. No oscillations, reflections or abrupt changes in wave 
speed are seen as the ‘shock’ passes through the interface. A very skewed discretization of 
12/17/27 was used for this case. Note that a multi-domain method formulated only for hyperbolic 
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Table I. Maximum slope and percentage relative error in maximum slope for Burgers' 
equation (6); comparison of present method with results from Reference I5 

Method Discretization Maximum slope % relative error 

Present 
Present 
Present 

Spectral 

Spectral 

ExactI5 

element 

collocation' 

3 domains: 
1211 3/12 152.03544 1.99 (-2) 
2012 1/20 152.000 I I 3.23 (-3) 
31/33/32 152.005 13 2.14 (-4) 

4 elements 

1 domain: 
1 611 6/ 1 611 6 152.04 2.29 ( -  2) 

64 152.025 1.31 (-2) 
152.005 16 

X 

Figure 2. Computed solution to equation (6)  at time increments of 0.1; u =  discretization 12/31/12, interfaces 
at k0.02 

-5 0 5 
X 

x 104 

Figure 3. Expansion of high-gradient region of Figure 2 
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X 

Figure 4. Computed solution to Burgers' equation with moving shock; v=O.OI,  discretization 12/17/27, interfaces 
at k0.25 

or elliptic equations would be unable to perform well on this problem, since the dissipation- 
dominated region passes through the interface. 

Spectral discretization of problems with discontinuous coefficients or source terms (or equiv- 
alently, discontinuous transformation metrics) or discontinuities in boundary conditions typically 
yields solutions with large oscillations and low-order error convergence. The present multi- 
domain technique may be used to isolate such discontinuities and recover exponential-order 
convergence. Figure 5 illustrates such an application; solutions to Laplace's equation are shown 
in which a jump in boundary conditions is enforced on one side of the domain. When the 
discontinuity lies at a point interior to one of the discretizations (right boundary of Figure 5), 
oscillations are seen clearly in the solution isolines. When the discontinuity occurs where the 
interface meets the boundary, however, the contour lines are smooth (upper boundary of 
Figure 5). 

Another example of the application of the multi-domain technique to isolate a discontinuity is 
in the solution of the following equation: 

V*(kVU)=O, ~ ~ C - 2 ~ 2 1 ,  y ~ [ - l , l ] ,  

U(x, - 1) = U(x, 1) = U(  - 2, y )  = 0, U(2, y) = cos(+7y), 

where k = k , ,  -2<x<O, and k = k 2 =  lOk,, O<x<2, with the interface at the line of coefficient 
discontinuity as shown in Figure6. The computed solution is everywhere smooth and the 
gradient jump at x = 0 is automatically enforced. 

To demonstrate the generality of the technique, a Poisson equation is solved on the skewed 
two-domain mesh shown in Figure 7.16 This mesh, containing 17 x 16 and 18 x 17 points in the 
left and right domains respectively, is generated by first choosing the interface line, in this case a 
cubic polynomial. Chebyshev distributions with respect to arc length are used to establish the 
mesh points on the interface, as well as along the domain boundaries at x = k 2. One curvilinear 
co-ordinate family is generated by connecting these corresponding points with straight lines. 
Mesh points along these co-ordinate lines are then established with Chebyshev distributions with 
respect to arc length, resulting in a sheared non-orthogonal mesh. The governing equation is 
written in generalized contravariant flux form; the metrics are evaluated by spectral differen- 
tiation of the co-ordinate distributions. The flux component normal to the interface is taken to be 
continuous in the interface condition. As can be seen in the isolines of the solution shown in 
Figure 8, the solution is everywhere smooth and regular. 
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u = o  u = 1  

u = l  

u = o  

u = o  

u = o  

solution to Laplace’s equation with discontinuous boundary conditions 
broken line 

u = o  

u = o  u = cos ( ITy/Z) 

u = o  

Figure 6. Computed solution to equation (8); interface at broken line 

Figure 7. Skewed two-domain mesh 
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as noted; interface at 

Figure 8. Solution of Poisson equation on mesh shown in Figure 7 
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NUMERICAL MODEL O F  NON-EQUILIBRIUM SHOCK FLOW 

The above technique will model the chemical kinetics and flow kinematics of a non-ionized air 
mixture (O’, N,, NO, 0 and N) passing through a fully resolved shock wave, thus alleviating the 
need for artificial viscosity. The governing equations are the quasi-one-dimensional 
Navier-Stokes equations’ and the species conservation equation.” The quasi-one-dimensional 
form is used to provide an artifice for controlling the shock location in the physical space for this 
otherwise indeterminate problem. 

The conservation equations can be written as 

where the dependent variables are denoted by U, the convective flux by F, the dissipative flux by 
V and the production rate by W. The equations are non-dimensionalized by dividing the state 
and transport parameters by their dimensional free-stream values. Each of the quantities U, F, V 
and W has eight components. These expressions are given explicitly in the Appendix. 

The viscosity of each of the individual species is calculated from a curve-fit relation.” Similarly, 
curve fits are used to obtain specific heats, internal energies and enthalpies.”. The thermal 
conductivity of each species i s  calculated from the Euken semi-empirical formula using the 
viscosity and specific heat of the species. Appropriate mixture rules are next used to obtain the 
transport properties of the mixture.” Experimental values of bulk viscosities, as obtained from 
acoustical interferometry and related experiments, are taken from Tr~esdel l . ’~ 

In the present work the diffusion model is limited to binary diffusion, with the binary diffusion 
coefficients specified by the Lewis number. The value of the Lewis number used is 1.4. 

The temperature range under study will not exceed 8000 K for conditions at an altitude of 
approximately 190000 ft. Therefore ionization reactions, which occur at roughly 9000 K, are not 
included. The chemical reactions utilized for the non-ionized air mixture are impact dissociation 
and exchange reactions. The 17 reactions included in the present study can be found in 
Reference 18, which also lists ionization reactions and gives the constants needed to evaluate 
reaction rates. 

Initial conditions are obtained from a spectral multi-domain code for solution of the 
Navier-Stokes equations with equilibrium chemistry, written for the above problem. These 
governing equations may be found in Reference 17. Transport properties are obtained in the 
manner previously discussed. The routines of Reference 20 generalized for air are used to obtain 
equilibrium concentrations. 

NUMERICAL ALGORITHM 

The multi-domain discretization involves three independent subdomains, with the shock located 
in the centre subdomain. Shock jump conditions are obtained by an iterative procedure to solve 
the Rankine-Hugoniot relations for real air. 

A direct inversion of the coupled system is utilized to obtain a fully implicit method. The 
conserved variables are written in delta form, and a pseudo-time iteration using backward Euler 
is utilized to obtain the steady-state solution as follows. Time-local linearization of equation ( 1  9) 
leads to the implicit form of the equation over the time step At: 
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where I is the unit matrix and A, B and S are Jacobian matrices; A=d(F-V)/dU, 
B = d(F - V)/dU, and S = dW/dU. These Jacobians are obtained analytically and are evaluated at 
the previous time step. Because of the large rank and ill condition of the Jacobian matrix, iterative 
improvement of the Gaussian elimination solution was found to be required. Nonetheless, the 
scheme required less than one second per time step on the Cray-2 at NASA Ames for typical 
discretizations used in this study. 

METHOD VERIFICATION 

The validity of the multi-domain Navier-Stokes algorithm is demonstrated by comparison with 
experiment. A low-density wind tunnel study of shock-wave structure and relaxation phenomena 
in gases was conducted by Sherman.24 The experiment measured shock-wave profiles recorded in 
terms of the variation in the equilibrium temperature of a small-diameter wire oriented parallel to 
the plane of the shock, as the wire was moved through the shock zone. The free stream Mach 
number was 1.98. For this test case, a Navier-Stokes spectral multi-domain calculation is 
performed for a perfect gas with temperature-dependent properties and a non-zero bulk viscosity 
corresponding to air.23 A comparison with experimental temperatures normalized by the free- 
stream temperature versus normalized distance is given in Figure 9. The experimental data points 
are represented by the open circles. The numerical results fall within a symbol width of the data. 
The multi-domain technique utilizes three domains. The centre domain, located between 
x =  -0.15 and x=0.3, contains 21 points; the outer domains contain 11 points each. The 
computational domain spans - 1 to 1. The unit Reynolds number of the flow is 80. A calculation 
for a unit Reynolds number of 1000 is given in Figure 10, which shows the ability of the method to 
accurately resolve strong gradients without numerical oscillations. The plot is of Mach number 
versus normalized distance. Three domains are again used; the centre domain contains 17 points 
and the outer domains contain 1 1  points each, with the interfaces located at  -0.15 and -0.1. 

t 
L 

T 14 1 5 1  

1 . k  Y 

L 

10 
-005 0 0 0 5  010 015 020 025 030 035 0 4 0  

X 

Figure 9. Comparison of multi-domain Navier-Stokes calculation with experimentally obtained temperatures; 
M ,  = 1.98, Re=80,  discretization 11/21/l I ,  interfaces at -0.15 and 0.3 
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Figure 10. Computed solution for Re= 1OOO; discretization 11/17/11, interfaces at -0.15 and -0.1 

RESULTS 

The method is used to calculate the chemical kinetics initiated as air passes through a hypersonic 
shock wave. The case to be discussed with respect to the effects of non-equilibrium assumptions 
on the conditions is M ,  = 11.0, T,  = 350 K and pm = 6 x lo-* g cmP3. These conditions invoke 
primarily 0, dissociations, with N, dissociations just beginning. Temperatures are not yet high 
enough for ionization to occur, so electronic energy modes remain unexcited. A fundamental 
study of the effects which artificial viscosity used in large-scale calculations has on the chemical 
kinetics occurring in the near-shock regime is given in Reference 25. 

Typical discretizations used in this study were 15, 27 and 33 points in the upstream, middle 
and downstream domains respectively. The backward-Euler implicit time-stepping algorithm 
typically required less than 2000 iterations to converge from an equilibrium starting solution, 
with a reduction of at least eight orders of magnitude in maximum residual. 

It is interesting to note the effect of downstream boundary conditions of the chemical species on 
the numerical results. Two boundary conditions are compared in Figure 1 1 .  The first involves 
imposing the equilibrium end state concentrations corresponding to the post-shock temperature 
and density values from the equilibrium jump conditions. The second involves a zero-gradient 
boundary condition on the species’ concentrations. The plot is of the log of the concentration in 
the relaxation zone versus normalized distance behind the shock. It is evident that the extrapol- 
ation condition leads to a smooth profile of concentrations down to a desired end state, whereas 
an imposed equilibrium end state causes oscillations in the numerics and a resulting discontinuity 
between the imposed equilibrium end state and the pathway chosen by the chemical kinetics 
calculation. 

To test the effect of the extrapolation boundary conditions on the chemical kinetics, a 
comparison is made between a computation for which the post-shock physical domain is long 
enough to allow the concentrations to relax to their final values, and one in which the domain is 
severely truncated. The results for [O,] and [O] are shown in Figure 12, with the truncated- 
domain ([ - 1, I]) solution represented by symbols and the extended-domain ([ - 1,1201) solution 
shown as curves. As can be seen, the profiles are identical. 

Figure 13 shows the Mach number and temperature profiles for the resolved shock. Note that 
only the near-shock region on a greatly expanded scale is plotted in the figure. The endpoints are 
at - 1 and 200 and the interface points at -0.3 and 0.1. The temperature overshoot is produced 
by the conversion of kinetic energy to thermal energy, on a scale too small for the chemistry to 
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Figure 1 I .  Species concentrations in the relaxation zone for both Dirichlet (imposed equilibrium end state) and 
extrapolation boundary conditions 
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Figure 12. Comparison of [O,] and [O] in the relaxation zone spanning [ - 1, 1 3  and [- 1, 1201 

respond. Thus the near-shock chemistry is essentially frozen, and the ratio of enthalpy to internal 
energy remains near its free-stream value. The chemical reactions then begin to respond on their 
own scale, as dictated by the reaction rate constants used in the model. A fraction of this thermal 
energy is absorbed by the reactions, thus lowering the temperature. Figure 14 shows the profiles 
for [N] and [NO] in the relaxation zone. 
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Figure 13. Mach number and temperature profiles for compressible visccius calculation ( M ,  = 1 I); computational 
domain [- 1, 2001, interfaces at -0.3 and 0.1, discretization 15/27/33 
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Figure 14. Shock-initiated chemical kinetics ( M ,  = 1 I); discretization 15/27/33, interfaces at -0.3 and 0 1  

CONCLUSIONS 

The present global flux balance, spectral multi-domain method has demonstrated maintenance of 
exponential-order.accuracy on a variety of advection- and diffusion-dominated test problems. 
Extremely large differences in discretization across an interface, as a result of domain size, number 
of points and stretchings, have been shown not to disrupt this property of the present method. 
Additionally, this technique can be used to isolate certain types of coefficient, mapping or 
boundary condition discontinuities. 
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These advantages have made possible the first compressible Navier-Stokes calculation by a 
spectral multi-domain technique. In addition, a Mach 11 shock calculation with non-equilibrium 
chemistry was performed to study the chemical kinetics initiated as air passes through a fully 
resolved shock wave. 

APPENDIX 

Non-equilibrium one-dimensional Navier-Stokes equations 

--+ -=-+ w au 8~ av 
at ax ax 

Conservation variables 

U i  = pyi , 1 6 i d NS (number of species) 

U N S +  1 = P  
UNS+ 2 = P' 

U N S + 3 = P E  

Viscous fluxes 

Le dyi 
' Pr Re dx 

V . = -  ,L-, l d i 6 N S  

2 + 2 p  dpu ' Z[(p-- I)( E -:)I,/ z + 7 1-p L e m ,  (.-$) NS C hi- ayi u-+ 
i = l  ax vNS + 3 =- Re ax (p-1)Pr Re dx 

where m ,  is the free-stream molecular weight, Le is the Lewis number, z is the compressibility 
(P=zpT),  hi is the enthalpy of species i and p=h/e .  

Source production terms 

NS NS 

j =  1 j =  1 
R f  = kf fl (pyjP," R!! = k: fl (pyj)";* 

kf=A1TA2exp(-A3/T) k!! = B ,  TBzexp( - B3/T) 



1134 M. G. MACARAEG AND C. L. STREETT 

where NR is the number of reactions, ~ l ~ , ~  and 
and backward reactions respectively and WNs+ = WNs+, = WNs+ = O .  

are the stoichiometric coefficients for forward 
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